Sn=5+11+19+29+41+...............=(1+22)+(2+32)+(3+42)+(4+52)+(5+62)+.......an=n+(n+1)2=n+n2+2n+1=n2+3n+1∴Sn=∑n2+3n+1=(n(n+1)(2n+1)6)+(3n(n+1)2)+n=n[(2n2+n+2n+1+9n+9+66)]=n×(2n2+12n+166)=n×(n2+6n+83)=(n(n+2)(n+4)3)