Find the sum to n terms of the series Sn=12+(12+22)+(12+22+32)....Also,determine∑Sn(n+1)2.
Let an be the nthe term of the given series then
an=12+22+32+...n2=s(n+1)(2n+1)6=16(2n3+3n2+n)
Let Sn be the sum to n terms of the given series , then
Sn=∑an=∑16(2n3+3n2+n)
⇒ Sn=26∑n3+36∑n2+16∑n
⇒ Sn=26[n(n+1)2]2+36×n(n+1)(2n+1)6+16.n(n+1)2
⇒ Sn=n(n+1)12[n(n+1)+(2n+1+1)]⇒ Sn=n(n+1)12(n2+3n+2)
⇒ Sn=n(n+1)2(n+2)12×(n+1)2=n(n+1)2(n+2)12
∴∑Sn(n+1)2=∑n(n+1)2(n+2)12×(n+1)2∑n(n+2)12=∑n2+2n12
=112[∑n2+2∑n]
=112[n(n+1)(2n+1)6+2×n(n+1)2]=n(n+1)12=[(2n+1)6+1]
=n(n+1)(2n+7)72