Find the sum to n terms of the series whose nth term is given by
n(n+1)(n+4)
Let an be the nth term of the given series and Sn be the sum of n terms of the given series.
∴an=n(n+1)(n+4) [Given]
=n3+5n2+4n
∴Sn=∑nk=1ak=∑nk=1(k3+5k2+4k)
=(13+5.12+4.1)+(23+5.22+4.2)+……+(n3+5n2+4n)
=(13+23+……+n3)+5(12+22+32+……+n2)+4(1+2+3+……+n)
=[n(n+1)]22+5n(n+1)(2n+1)6+4n(n+1)2
=n2(n+1)24+5n(n+1)(2n+1)6+2n(n+1)
=n(n+1)[n(n+1)4+5(2n+1)6+2]
=n(n+1)[3n2+3n+20n+10+2n12]
=n(n+1)(3n2+23n+34)12