Find the sum upto first 11 terms of the series 1.4.7 + 4.7.10 + 7.10.13 + . . . . . is
Let Tn be the nth term of given series.
Tn = (nth term of 1,4,7,.......) (nth term of 4,7,10, .......) (nth term of 7,10,13,.......)
= [1 + (n-1)3] [4 + 3(n-1)] [7 +(n-1)3]
= (3n - 2)(3n + 1) (3n + 4)
Let Vn = (3n - 2)(3n + 1) (3n + 4) (3n + 7)
Then Vn−1 = (3n - 5)(3n - 2) (3n + 1) (3n + 4)
Vn - Vn−1 = (3n - 2)(3n + 1) (3n + 4) [(3n + 7) - (3n - 5)]
=12Tn
⇒ Tn = 112 (Vn - Vn−1)
Sn=∑Tn=∑nn=1112(Vn−Vn−1)
= 112(Vn−V0)
=112 ((3n−1)(3n+2)(3n+4)(3n+7)+56)
So,sum of the first 11 terms
= 112 [(33−1)(33+2)(33+4)(33+7)+56]
= 138138