wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the sum upto n terms of the series
1222+3242+...................................to n term.

Open in App
Solution

Consider n be an even integer 2m

Then.

1222+3242+5262+.........upto2mterms

=(1222)+(3242)+(5262)+.......uptomterms=(12)(1+2)+(34)(3+4)+(56)(5+6)+......mterms=3711.......uptomterms=(3+7+11+......uptomterms)=m2[2×3+(m1)4]=m(2m+1).....(1)=n2(n+1)(n=2m)

Thus, If n is an even integer then the sum of the given series upto n terms =n2(n+1)

Now,

Consider n be an odd integer =2m+1

Then,

=1222+3242+5262+.........to(2m+1)terms=(1222)+(3242)+(5262)+.......to(2m+1)1muterms=m(2m+1)+(2m+1)2[Using(1)]=(2m+1)(m+1)=n(n12+1)(n=2m+1andm=n12)=n(n+1)2
Hence, If n is an odd integer then the sum of the series upto n terms =n(n+1)2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon