Let x=1+13+1.33.6+1.3.53.6.9+1.3.5.73.6.9.12+....=1+1(13)+1.31.2(13)2+1.3.51.2.3(13)3+...............(i)
Observe that RHS is of the form
1+p(kq)+p(p+q)2!(kq)2+p(p+q)(p+2q)3!(kq)3+.......=(1−k)−pq.......(ii)
(Binomial expansion for fractional index)
Comparing equation(i) and L.H.S of equation(ii), we get
p=1,p+q=3 and kq=13
Substitute p=1 in p+q=3
⇒q=3−1
∴q=2
Substitute q=2 in kq=13
⇒k=13×2
∴k=23
Hence, p=1 , q=2 , k=23
Substitute above values in R.H.S of equation(ii) to get the sum of the given series.
Therefore x=(1−23)−12
=(13)−12
=(31)12 (Since, (ab)−m=(ba)m)
Hence, required sum is x=√3