y=10⇒1+cost=0⇒cost=−1⇒t=−π,π
x=a(t+sint)⇒dxdt=a(1+cost)
y=a(1+cost)⇒dtdx=−asint
√(dxdt)2+(dydt)2=√a2(1+cost)2a2sin2t
=√a2[1+cos2t+2cost+sin2t]
=a√2+2cost=√2a√(1+cost)
=√2.a√2cos2t/2=2acost2
∴ Surface Area =∫π−π2π⋅√(dxdt)2+(dydt)2dt
=∫π−π2πa(1+cost)⋅2acost2dt
=∫π−π2πa⋅2⋅cos2t2⋅2acost2dt
=16πa2∫π0cos3t2dt
=16πa2∫π02cos3xdx ....[Take t2=x]
=32πa2I3=32πa2×23
=64πa23 sq. units