The required surface area S.A=∫a02πydx
=2π∫a0y
⎷1+(dydx)2dx
Here y2=4ax⇒ 2yy′=4a ⇒y′=2ay
So, 1+(dydx)2=1+(2ay)2=1+4a2y2=1+4a24ax
=1+ax=x+ax y2=4ax⇒y=√4ax=2√a√x
∴S.A=∫a02π(2√a√x)
⎷x+axdx
=4π√a∫a0(x+a)12dx=4π√a⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩[x+a]3232⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭a0
=8π√a3(2a)3/2−(a)3/2
=8πa23(2√2−1) sq.units