y=0⇒1+cost=0
cost=−1⇒t=−π,π
x=a(t+sint);y=a(1+cost)
dxdt=a(1+cost)dydt=−asint
√(dxdt)2+(dydt)2=√a2(1+cost)2+a2sin2t
Surface area =∫π−π2πa(1+cost)2acost2dt
=∫π−π2πa.2cos2t2.2acost2dt
=16πa2∫π0cos3t2dt
=16πa2∫π/202cos3xdx
[Take t2=x]
=32πa2I3=32πa2×23
=643πa2 sq. units.