The correct option is A x−20y−7=0, 20x+y−140=0.
Given curve is, y(x−2)(x−3)−x+7=0⇒y(x2−5x+6)−x+7=0
Differentiating w.r.t x
dydx(x2−5x+6)+y(2x−5)−1=0
putting (7,0) to get slope of the tangent
dydx(72−5.7+6)+0(2x−5)−1=0⇒dydx=120
⇒ slope of tangent is m=120 and slope of normal is, m′=−1m=−20
Hence required lines are x−20y−7=0, and 20x+y−140=0.