Find the term independent of x in the expansion of (1+x+2x3)(32x2−13x)9
In the expansion of E=(32x2−13x)9, we have
Tr+1=(−1)r.9Cr.(32x2)(9−r)(13x)r
⇒Tr+1=(−1)r.9Cr.3(9−2r)2(9−r).x(18−3r).
∴(1+x+2x3)[(a0×1x3+a1×1x+a2)from E]
=(1+x+2x3)[{(−1)7.9C7.e−522×1x3}+{(−1)6.9C6.3−323×x0}]
x=−1⇒18−3r=−1⇒r is fraction18−3r=0⇒r=6 and 18−3r=−3⇒r=7
=(1+x+2x3)[−127x3+718]
∴ required term =(−227+718)=1754