Given expansion is (1+x+2x3)(32x2−13x)9
Now, consider (32x2−13x)9
Tr+1=9Cr(32x2)9.r(−13x)r=9Cr(32)9−x(−13)rx100−3r
Hence, the general term in the expansion of (1+x+2x3)(32x2−13x)9 is
9Cr(32)9−r (−13)rx18−3r+9Cr(32)9−r(−13)rx19−3r+29Cr(32)9−r(−13)rx21−3r
For term independent of x, putting 18−3r=0, 19−3r=0 & 21−3r=0, we get
r=6,7
Hence, ground term is not independent of x, therefore, term independent of x is?
9C6(32)9−6 (−13)6+2.9C7(32)9−7(−13)7
=9×8×7×6!6!×3×2×123.33−2⋅9×8×7!7!×2×1×3222×137
=dfrac848×133−364×235=21−454=1754.