The given series is an A.P., i.e., a=25,d=−9/4.
Tn=a+(n−1)d=(25+94)−94n
or T−n=1094−94n
Now Tn will be negative if 1094−94n<0 or n>1219.
Above shows that T13 will be the first negative term and hence T12 will be the smallest positive terms. T13=−2,T12=14 is numerically smallest.