The correct option is D -43,3
Given equation is −3x2+5x+12=0
On comparing with
ax2+bx+c=0, we get
a=-3, b=5 and c=12
By quadratic formula,
x=−b±√b2−4ac2a
=−(5)±√(5)2−4(−3)(12)2(−3)=−5±√25+144−6=−5±√169−6=−5±13−6⇒x=8−6, x=−18−6⇒x=−43,3
So, −43 and 3 are the two roots of the given equation.