Find the time period of small oscillations of the following systems.
(p) A uniform square plate of edge 'a' suspended through a corner.
(q) A uniform disc of mass m and radius r suspended through a point r2 away from the centre.
(i)2π√2√2a3g (ii) 1.51 sec (iii) 2π√3r2g (iv)T=2π√2Rg
(r)
Distance of Suspension = a√2
−mga√2sinθ=Iα
−mga√2sinθ=(Iz+m(a√2)2)α (Parallel axis theorem)
−mga√2sinθ=(Ix+Iy+m(a√2)2)α (Perpendicular axis theorem)
−mga√2 sinθ=(ma212+ma212+m(a√2)2)∝
−mga√2sinθ=2ma23∝
∝=−3ga2√2θ
ω2=3ga2√2
T=2π√2√2a3g
(q)
−mgr2sinθ=I∝
For small θ
−mgr2θ=I∝
−mgr2θ=(Ic+m(r2)2)∝
−mgr2θ=(mr22+m(r2)2)∝
−mgr2θ=(3mr24)∝
∝=−2g3rθ
ω2=2g3r
T=2π√3r2g