Find the time period of the motion of the particle shown in figure (12-E14). Neglect the small effect of the bend near the bottom.
Let the time taken to travel AB and BC be t1 and t2 respectively.
For part AB, a1=g sin 45∘,
s1=0.1sin 45∘=2 m
Let v = velocity at B
∴ v2−u2=2a1s1
⇒ v2=2×g sin 45∘×0.1sin 45∘=2
⇒ v=√2 m/s
∴ t1=v−ua1=√2−0g√2
=2g=210=0.2 sec ...(A)
Again for part BC,
a2=g sin 60∘,
u=√2 v=0
∴ t2=0−√2g(3√2)=2√2√3 g
=2×(1.414)(1.732×10)=0.165 sec
So, time period = 2 (t1+t2)
=2 (0.2+0.155)=0.73 sec.