wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the transverse common tangents of the circles:
x2+y24x10y+28=0 and x2+y2+4x6y+4=0

Open in App
Solution


x2+y24x10y+28=0
(x2)2+(y5)2=12
x2+y2+4x6y+4=0
(x+2)2+(y3)2=32
APBQ=AOBO=13
So, 0=B+3A4=(2,3)+(6,15)4
=(1,92)
OB=32+(32)2=325
So, sinθ=QBOB=3325=25
tanθ=sinθ1sin2θ=2515=2
Slope of AB=3522=12
So slope of tangents is m=12±2112×2
=or34
So, the tangents are x=1
or y92=34(x1)
i.e. 4y18=3x+3
3x+4y=21

645184_609944_ans_d38b2593468d441a998d9a917603e14d.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Lines and Points
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon