The correct option is A cos2α
a=2sin2β+4cos(α+β)sinαsinβ+cos2(α+β)
⇒a=2sin2β+2cos(α+β)(2sinαsinβ)+cos2(α+β)
⇒a=1−cos2β+2cos(α+β)(cos(α−β)−cos(α+β))+cos2(α+β)
...{∵cos2A=1−2sin2A&2sinAsinB=cos(A−B)−cos(A+B)}
⇒a=1−cos2β+(2cos(α+β)cos(α−β))−(2cos2(α+β))+cos2(α+β)
⇒a=1−cos2β+(2cos(α+β)cos(α−β))−(2cos2(α+β))+cos2(α+β)
⇒a=1−cos2β+(cos2α+cos2β)−(1+cos2(α+β))+cos2(α+β)
...{∵cos2A=2cos2A−1&2cosAcosB=cos(A+B)+cos(A−B)}
∴a=cos2α
Hence, option 'A' is correct.