2(sin6θ+cos6θ)−3(sin4θ+cos4θ)
=2((sin2θ)3+(cos2θ)3)−3((sin2θ)2+(cos2θ)2)
=2((sin2θ+cos2θ)(sin4θ+cos4θ−sin2θcos2θ))03((sin2θ+cos2θ)2−2sin2θcos2θ)
[using identities: a3+b3=(a+b)(a2+b2−ab),(a+b)2=a2+b2+2ab]
=2(1(sin4θ+cos4θ−sin2θcos2θ)−3(1−2sin2θcos2θ)(sin2θ+cos2θ=1)
=2sin4θ+2cos4θ−2sin2θcos2θ−3+6sin2θcos2θ
=2sin4θ+2cos4θ+4sin2θcos2θ−3
=2(sin4θ+cos4θ+2sin2θcos2θ)−3
=2(sin2θ+cos2θ)2−3
=2(1)−3
=−1
∴2(sin6θ+cos6θ)−3(sin4θ+cos4θ)=−1.