The correct option is C 1085
Given series is 20+21+22+23+ .......+50.
= (1+2+3+ ......+50) - (1+2+3+.....+19)
∵ Sum of first 'n' natural numbers is n×(n+1)2
∴ (1+2+3+ ......+50) = 50×(50+1)2
= 25×51
= 1275
and (1+2+3+.....+19) = 19×(19+1)2
= 190
⇒ 20+21+22+23+ .......+50 = 1275 - 190
= 1085