Find the value of 27x3+8y3, if
(i) 3x + 2y = 14 and xy = 8
(ii) 3x + 2y = 20 and xy = 149
(i) 3x + 2y = 14 and xy = 8
Cubing both sides,
(3x+2y)3=(14)3⇒ (3x)3+(2y)3+3×3x×2y(3x+2y)=2744⇒ 27x3+8y3+18xy(3x+2y)=2744⇒ 27x3+9y3+18×8×14=2744⇒ 27x3+8y3+2016=2744∴ 27x3+8y3=2744−2016=728(ii) 3x+2y=20 and xy=149Cubing both sides(3x+2y)3=(20)3⇒ (3x)3+(2y)3+3×3x×2y(3x+2y)=8000⇒ 27x3+8y3+8×2xy(3x+2y)=8000⇒ 27x3+8y3+18×149×20=8000⇒ 27x3+8y3+560=8000⇒ 27x3+8y3=8000−560=7440∴ 27x3+8y3=7440