Find the value of 4 tan−115−tan−11239.
We have, 4tan−115−tan−11239
=2.2tan−115−tan−11239=2.⎡⎣tan−1251−(15)2⎤⎦−tan−11239 [∵ 2tan−1 x=tan−1(2x1−x2)]=2.[tan−1(251−125)]−tan−11239=2.[tan−1(2/524/25)]−tan−11239=2 tan−1512−tan−11239=tan−12.5121−(512)2−tan−11239 [∵ 2 tan−1 x=tan−1(2x1−x2)]=tan−1(561−25144)−tan−11239=tan−1(144×5119×6)−tan−11239=tan−1(120119)−tan−11239
=tan−1(120119−12391+120119.1239) [∵ tan−1 x−tan−1 y=tan−1(x−y1+xy)]=tan−1(120×239−119119×239×+120)=tan−1[28680−11928441+120]=tan−12856128561=tan−1(1)=tan−1(tanπ4)=π4