The correct option is D 56a3b3
Step 1:––––––––
First, we would multiply 7ab and 4ab. This product can be evaluated as:
(7ab)×(4ab)
=(7×4)×(ab×ab)
=28×(a1+1b1+1) (∵am×an=am+n)
=28×a2b2
The value of the product (7ab)×(4ab) is 28a2b2.
Step 2:––––––––
Now, we would multiply 28a2b2 with 2ab. This product can be evaluated as:
7ab×4ab×2ab
=(7ab×4ab)×2ab
=(28a2b2)×(2ab)
=(28×2)×(a2b2×ab)
=56×(a2+1b2+1) (∵am×an=am+n)
=56a3b3
7ab×4ab×2ab=56a3b3
The value of the product 7ab×4ab×2ab is 56a3b3. Therefore, option (d.) is the correct answer.