Given: f(x)=2x3+ax2+bx+10
A polynomial f(x) is exactly divisible by x−a if and only if f(a)=0.
f(x) is exactly divisible by x+2.
∴f(x)=0
2(−2)3+a(−2)2+b(−2)+10=0−16+4a−2b+10=0
4a−2b=6
2a−b=3
b=2a−3-(i)
Also, f(x) is exactly divisible by (2x−1).
∴f(12)
2(12)3+a(12)2+b(12))+10=0
14+a4+b2+10=0
1+a+2b+40=0
a+2b=−41-(ii)
Step 2: Find the value of a and b
Put the value of b in equation (ii)
a+2(2a−3)=−41
a+4a−6=−41
5a=−35
a=−7
Put the value of a in equation (i)
b=2(−7)−3=−14−3
b=−17
Hence, a=−7 and b=−17.