Step 1: Form the equations
Given: f(x)=a(x)3+3x2+bx–3
From remainder theorem, we know that when a polynomial f(x) is divided by (x-a), then the remainder is f(a).
f(x) is exactly divisible by (x-1). So, remainder = 0.
∴f(−32)=0
a(−32)3+3(−32)2+b(−32)−3=0
a(−278)+3(94)−3b2−3
−27a+30−12b=0
27a−12b+30-(i)
Also, f(x) leaves remainder −3 when divided by (x+2).
∴f(-2)=−3
a(−2)3+3(−2)2+b(−2)−3=−3
−8a+12−2b−3=−3
−8a−2b=−12
b=6−4a-(ii)
Step 2: Find the value of a and b
Put the value of b from equation
27a=−12(6−4a)+30
27a−72+483+30
−21a=−42
a=2
Put the value of a in equation (ii)
b=6−4(2)
b=−2
Hence, a=2 and b=−2.