wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of 'a' for which the function f defined by
fx=asinπ2(x+1),x0tanx-sinxx3,x>0is continuous at x = 0.

Open in App
Solution

Given: fx=a sin π2x+1, x0tan x-sin xx3, x>0
We have

(LHL at x = 0) = limx0-fx=limh0f0-h=limh0f-h=limh0a sin π2-h+1=a sinπ2=a

(RHL at x = 0) = limx0+fx=limh0f0+h=limh0fh=limh0tan h-sin hh3

limx0+fx=limh0sin hcos h-sin hh3limx0+fx=limh0sin hcos h1-cos hh3limx0+fx=limh01-cos htan hh3limx0+fx=limh02sin2 h2tan h4h24×hlimx0+fx=24limh0sin2h2tan hh24×hlimx0+fx=12limh0sinh2h22limh0tan hhlimx0+fx=12×1×1limx0+fx=12

If fx is continuous at x=0, thenlimx0-fx=limx0+fxa=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon