Let, a→=i⏜+αj⏜+3k⏜,b→=3i⏜-αj⏜+k⏜. The area of the parallelogram whose adjacent sides are represented as a→,b→ is 83 square units, then a→.b→is equal to
Find a→.b→and a→×b→:
As we know,
The area of the parallelogram =a→×b→
=83
⇒ (i⏜+αj⏜+3k)⏜×(3i⏜-αj⏜+k⏜)=83
⇒(-3αk+9j-αk+3αi-j+αi)=83
⇒ (4α)i+8j-(4α)k=83
⇒ (16α2+64+16α2)=83
⇒ 32α2+64=192
⇒ α2=4
Now,
a→.b→=(3-α2+3)=(6-4)=2
∴the area of parallelogram is 2 square units
The unit vector in ZOX- plane and making angle 45° and 60°, respectively with a⇀=2i^+2j^-k^ and b⇀=j^-k^is?