Find the value of b ϵR such that x2+bx−1=0,x2+x+b=0 have a common root.
x2+bx−1=0 ................(1)
x2+x+b=0 .................(2)
Let the common root = α
α2b2+1 = αb+1 11−b
α=b2+1b+1, α = 11−b
b2+1b+1 = b+11−b
b2+−b3−b = b2+1+2b
b3+3b=0
b(b2+3)=0
b=0orb≠ i√3