wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of: tanθ1cotθ+cotθ1tanθ1+secθcscθ

Open in App
Solution

Given expression : tanθ1cotθ+cotθ1tanθ1+secθcscθ(1)

Consider the numerator

tanθ1cotθ+cotθ1tanθ

=tanθ11tanθ+1+1tanθ1tanθ

=tan2θtanθ11tanθtanθ1

=tan2θ1tanθtanθ1

=tan3θ1tanθ(tanθ1)

=(tanθ1)(tan2θ+tanθ+1)tanθ(tanθ1)

=tan2θ+tanθ+1tanθ

=tanθ+cosθ+1

=sinθcosθ+cosθsinθ+1

=sin2θ+cos2θcosθsinθ+1=1+1cosθsinθ

tanθ1cotθ+cotθ1tanθ=1+secθcscθ

Substituting in (1)

tanθ1cotθ+cotθ1tanθ1+secθcscθ =1+secθcscθ1+secθcscθ=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon