Find the value of cosπ6.cosπ3.cos4π6.cos8π6.cos16π6.cos32π6
√364
We know cosθ. cos2θ.cos22θ.cos23θ................cos2n−1θ = sin2nθ2nsinθ
we can easily derive it by multiplying and dividing by 2 sinθ and then using the formula sin2θ = 2 sinθ.cosθ
cosπ6.cos2π6.cos4π6.cos8π6.cos16π6.cos32π6
= sin26π626sinπ6
=sin32π326sin30∘=sin(15×2π×2π3)26×12
= sin2π325 = sin(π−π3)32 = sinπ332
= √32×32 = √364