Find the value of cosπ/8.
Given:
Let π8=A and 2A =π4.
We know that, cos2A=2cos2A−1
Also, cos(π4)=2cos2A−1.
cos2A=1+1√2=√2+1√2
cos2A=√2(√2+12)
Multiply numerator and denominator by √2.
cos2A=(2+√24)
cosA= ⎷(2+√24)
cos(π8)=√2+√22
Thus, cos(π8)=√2+√22.