Find the value of (cos20∘−sin20∘) (1+4sin20∘cos20∘)
We don't know the values of cos20 or sin20.So we have to simplify the terms.
(cos20∘−sin20∘) (1+4cos20∘sin20∘)
= cos20∘+4cos220∘sin20∘−sin20∘−4sin220∘cos20∘
= cos20∘+4(1−sin220∘)sin20∘−sin20∘−4(1−cos220∘)cos20∘
= cos20∘+4sin20∘−4sin320∘−sin20∘−4cos20∘+4cos320∘
= 3sin20∘−4sin320∘−3cos20∘+4cos320∘
(sin3A = 3sin3A - 4sinA and cos3A = 4cos3A - 3cosA)
= sin(3×20∘) + cos(3×20∘)
= sin60∘ + cos60∘
= √32 + 12 = (1+√3)2