∫53(x−2)dx
According to definition
∫baf(x)dx=limh→0[f(a+h)+f(a+2h)+f(a+3h)+...+f(a+nh)]
Here a = 5, b = 5, f(x) = x - 2, nh = 5 - 3 = 2
∴∫53(x−2)dx
=limh→0h[f(3+h)+f(3+2h)+f(3+3h)+...+f(3+nh)]
=limh→0h[(3+h−2)+(3+2h−2)+(3+3h−2)+...+(3+nh−2)]
=limh→0h[1+h+1+2h+1+3h+...+1+nh]
=limh→0h[h(1+2+3+...+n)+(1+1+1+...+ntimes)]
=limh→0h(hn(n+1)2)+n
=limh→0h(hn2+hn+2n)2
=limh→0h2n2+h2n+2nh2
=limh→0(nh)2+2(nh)+h2n2
=(2)2+2×2+02
=4+42=82=4