∫20(x+4)dx
Here f(x)=x+4,a=0,b=2
and nh=b−a=2−0=2
∴∫20(x+4)dx
=limh→0h[f(0+h)+f(0+2h)+...+f(0+nh)]
=limh→0h[f(h)+f(2h)+...+f(nh)]
=limh→0h[(h+4)+(2h+4)+...+(nh+4)]
=limh→0h[h(1+2+...+n)+(4+4+...+4)]
=limh→0h[h(n(n+1)2)+4n]
=limh→0[nh(nh+h)2+4nh]
=limh→0[2(2+h)2+4×2]
=(2+0)−8=10