wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of definite integrals, as the limit of a sum (by first principle).
20(x+4)dx

Open in App
Solution

20(x+4)dx
Here f(x)=x+4,a=0,b=2
and nh=ba=20=2
20(x+4)dx
=limh0h[f(0+h)+f(0+2h)+...+f(0+nh)]
=limh0h[f(h)+f(2h)+...+f(nh)]
=limh0h[(h+4)+(2h+4)+...+(nh+4)]
=limh0h[h(1+2+...+n)+(4+4+...+4)]
=limh0h[h(n(n+1)2)+4n]
=limh0[nh(nh+h)2+4nh]
=limh0[2(2+h)2+4×2]
=(2+0)8=10

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon