The law of formation holds for pn and qn; let us take un to denote either of them; then un=nun−1+nun−2,
or un−(n+1)un−1=−(un−1−nun−2).
Similarly, un−1−nun−2=−(un−2−¯¯¯¯¯¯¯¯¯¯¯¯¯n−1un−3).
........................................................................
u3−4u2=−(u2−3u1);
whence by multiplication, we obtain
un−(n+1)un−1=(−1)n−2(u2−3u1).
The first two convergents are 11, 24; hence
pn−(n+1)pn−1=(−1)n−1, qn−(n+1)qn−1=(−1)n−2.
Thus pn(n+1)!−pn−1n!=(−1)n−1(n+1)!, qn(n+1)!−qn−1n!=(−1)n−2(n+1)!,
pn−1n!−pn−2(n−1)!=(−1)n−2n!, qn−1n!−qn−2(n−1)!=(−1)n−3n!,
............................................................................................................
p23!−p12!=−13!, q23!−q12!=13!,
p12!=12!, q12!=12=1−12!;
whence, by addition
pn(n+1)!=12!−13!+14!−⋯+(−1)n−1(n+1)!;
qn(n+1)!=1−12!+13!−14!+⋯+(−1)n−2(n+1)!.
By making n infinite, we obtain
limpnqn=1e÷(1−1e)=1e−1,
which is therefore the value of the given expression.