wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of 11+22+33+.

Open in App
Solution

The law of formation holds for pn and qn; let us take un to denote either of them; then un=nun1+nun2,
or un(n+1)un1=(un1nun2).
Similarly, un1nun2=(un2¯¯¯¯¯¯¯¯¯¯¯¯¯n1un3).
........................................................................
u34u2=(u23u1);
whence by multiplication, we obtain
un(n+1)un1=(1)n2(u23u1).
The first two convergents are 11, 24; hence
pn(n+1)pn1=(1)n1, qn(n+1)qn1=(1)n2.
Thus pn(n+1)!pn1n!=(1)n1(n+1)!, qn(n+1)!qn1n!=(1)n2(n+1)!,
pn1n!pn2(n1)!=(1)n2n!, qn1n!qn2(n1)!=(1)n3n!,
............................................................................................................
p23!p12!=13!, q23!q12!=13!,
p12!=12!, q12!=12=112!;
whence, by addition
pn(n+1)!=12!13!+14!+(1)n1(n+1)!;
qn(n+1)!=112!+13!14!++(1)n2(n+1)!.
By making n infinite, we obtain
limpnqn=1e÷(11e)=1e1,
which is therefore the value of the given expression.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon