wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of dydx at θ=π4 if x=aeθ(sinθcosθ) and y=aeθ(sinθ+cosθ).

Open in App
Solution

y=aeθ(sinθ+cosθ)
x=aeθ(sinθcosθ)
Applying parametric differentiation,
dydx=dydθdxdθ----(1)
Now, dydθ=aeθ(cosθsinθ)+aeθ(sinθ+cosθ)
Applying product rule: we get
=2aeθ(cosθ)
dxdθ=aeθ(cosθ+sinθ)+aeθ(sinθcosθ)
=2aeθ(sinθ)
Substituting the values of dydθ and dxdθ in (1),
dydx=2aeθcosθ2aeθsinθ=cotθ

Now, dydx at θ=pi4
[cotθ]θ=pi4=cotπ4=1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sound Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon