Find the value of dydx at θ=π4 if x=aeθ(sinθ−cosθ) and y=aeθ(sinθ+cosθ).
Open in App
Solution
y=aeθ(sinθ+cosθ) x=aeθ(sinθ−cosθ) Applying parametric differentiation, dydx=dydθdxdθ----(1) Now, dydθ=aeθ(cosθ−sinθ)+aeθ(sinθ+cosθ) Applying product rule: we get =2aeθ(cosθ) dxdθ=aeθ(cosθ+sinθ)+aeθ(sinθ−cosθ) =2aeθ(sinθ) Substituting the values of dydθ and dxdθ in (1), dydx=2aeθcosθ2aeθsinθ=cotθ