The common denominator is (b−c)(c−a)(a−b)(x+a)(x+b)(x+c); the numerator
=−∑(a+p)(a+q)(b−c)(x+b)(x+c)
=−∑(a+p)(a+q){x2(b−c)+x(b2−c2)+bc(b−c)}
The co efficient of x2=−∑a2(b−c)−(p+q)∑a(b−c)−pq∑(b−c)
=(b−c)(c−a)(a−b)
The co efficient of x=−∑a2(b2−c2)−(p+q)∑a(b2−c2)−pq∑(b2−c2)
=(p+q)(b−c)(c−a)(a−b)
The term independent of x
=−abc∑a(b−c)−abc(p+q)∑(b−c)−pq∑bc(b−c)
=pq(b−c)(c−a)(a−b)
Thus, the numerator is =(b−c)(c−a)(a−b){x2+(p+q)x+pq}
Value =x2+(p+q)x+pq(x+a)(x+b)(x+c)