The correct option is
C 2√3sin(−660o)tan(1050o)sec(−420o)cos(225o)cosec(315o)cos(510o)
=−sin(660o)tan(1050o)sin(315o)cos(225o)cos(420o)cos(510o)
Now, by using identity :
sin(2π+x)=sinx
sin(660o)=sin(360o+300o)=sin(300o)
sin(π+x)=−sinx
sin(300o)=sin(180o+120o)=−(−sin120o)=sin(120o)
sin(120o)=sin(180o−60o)=sin60o
Therefore,
−sin(660o)=sin60o
Similarly, sin315o=−sin45o
Since, tanx=sinxcosx
Therefore,
tan1050o=sin1050ocos1050o=sin330ocos330o
sin330o=−sin30o
cos330o=cos30o
tan1050o=−tan30o
Since, cos(2π+x)=cosx⟹cos420o=cos60o
cos510o=cos150o
Since, cos(π+x)=−cosx⟹cos150o=−cos30o
cos225o=−cos45o
Hence, the value is :
√32×1√3×1√21√2×12×√32=2√3