wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of sin(660o)tan(1050o)sec(420o)cos(225o)cosec(315o)cos(510o)

A
34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
43
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 23
sin(660o)tan(1050o)sec(420o)cos(225o)cosec(315o)cos(510o)
=sin(660o)tan(1050o)sin(315o)cos(225o)cos(420o)cos(510o)
Now, by using identity :
sin(2π+x)=sinx
sin(660o)=sin(360o+300o)=sin(300o)
sin(π+x)=sinx
sin(300o)=sin(180o+120o)=(sin120o)=sin(120o)
sin(120o)=sin(180o60o)=sin60o
Therefore,
sin(660o)=sin60o
Similarly, sin315o=sin45o
Since, tanx=sinxcosx
Therefore,
tan1050o=sin1050ocos1050o=sin330ocos330o
sin330o=sin30o
cos330o=cos30o
tan1050o=tan30o
Since, cos(2π+x)=cosxcos420o=cos60o
cos510o=cos150o
Since, cos(π+x)=cosxcos150o=cos30o
cos225o=cos45o
Hence, the value is :
32×13×1212×12×32=23

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon