The correct option is D -132
cos(π−3π11)=−cos8π11
cos(π+5π11)=−cos16π11
The given expression would become
cosπ11cos2π11cos4π11cos8π11cos16π11
Let A=π11. Then the equation becomes
=cosAcos2Acos22Acos23Acos24A
Using the formula
cosAcos2Acos(22A)cos(23A)........cos(2n−1A)=sin2nA2nsinA
Thus,
=sin25A25sinA
=sin32A32sinA=sin(33A−A)32sinA............................∵11A=π
=sin(3π−A)32sinA
=(sinA32sinA)
Hence, option 'D' is correct.
=132