wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of: 2cosx(1sinx)(1+sin2x)dx.

Open in App
Solution

Consider, I=2cosx(1sinx)(1+sin2x)dx.

Substituting sinx=udu=cosxdx, we get,

I=2cosxdx(1sinx)(1+sin2x)=2du(u1)(1+u2)

I=duu1+u+1u2+1du

I=ln(u1)+ln(u2+1)2+tan1u+C

Substituting back, we get:

I=ln(sinx1)+ln(sin2x+1)2+tan1(sinx)+C

where C is a real constant of integration.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon