wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of expression cos4π8+cos43π8+cos45π8+cos47π8

Open in App
Solution

Let given expression be denoted by E

E=cos4π8+cos43π8+cos45π8+cos47π8

E=cos4π8+cos43π8+cos4(π3π8)+cos4(ππ8)

=cos4π8+cos43π8+cos43π8+cos4π8

[ cos(πθ)=cosθ]

=2(cos4π8+cos43π8)

E=2(cos4π8+cos4(π2π8))

=2(cos4π8+sin4π8)

[cos(π2θ)=sinθ]

=2((cos2π8)2+(sin2π8)2)

=2[(cos2π8+sin2π8)22cos2π8sin2π8]

[ a2+b2=(a+b)22ab]

=24cos2π8sin2π8

[sin2θ+cos2θ=1]

E=24cos2π8sin2π8

=2sin2(π4) [sin2θ=2sinθcosθ]

=2(12)2

=212

=32


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon