Find the value of expression
sin(−θ)+cos(−θ)+sec(−θ)
+sin(π−θ)+cos(π−θ)+sec(π−θ)
0
Solution: First let's find the value of sin(−θ),
Let θ be an angle in the standard position in the I quadrant.
A(x,y) and A′(x′,y′) be the point of intersection of the terminal side of angle −θ in the standard position with the circle.
Now ∠BOA=∠BOA′ (numerically) and A & A′ have the same projection B on the x−axis.
∠OBA=∠OBA′= 90∘
OA=OA′ (radius of circle)
△BOA ≅ △BOA′
x=x′ & y=−y′
sin(−θ)= y′r = −yr=−sinθ
Similarly, cos(−θ)=cosθ & sec(−θ) =secθ
Let θ be an angle in the standard position in the 1st quadrant.
Let its terminal sides cut the circle with center 0 and radius r. Let A(x,y) and A′(x′,y′) be the
point of intersection of the terminal side of angles θ and π−θ respectively with the circle. Let B &
B′ be the projection of A and A′ respectively in the x− axis.
In △OAB & △OA′B′
OA=OA′ radius of circle
∠OBA= ∠OB′A′= 90∘
∠A′OB= ∠AOB=θ
So, OAB≅ △OA′B′
X′=−x,Y′=y
sin(π −θ) = y′r= yr= sinθ
sin(π−θ)=sinθ
Similarly, cos(π−θ) =−cosθ & sec(π−θ) =−secθ
From the given expression
sin(−θ)+cos(−θ)+sec(−θ)+sin(π−θ)+cos(π−θ)+sec(π−θ)
−sinθ+cosθ+secθ+sinθ−cosθ−secθ=0