Find the value of expression ∑ni=1∑ij=1∑jk=16.
n(n+1)(n+2)
∑ni=1∑ij=1∑jk=16.
Let's calculate the summation part one by one from right hand side
= ∑ni=1∑ij=16j. {Where ∑jk=16=6j}
= 6∑ni=1 i(i+1)2 {Where ∑jk=1 6j = 6 × sum of first n natural number}
= 3[∑ni=1i2+∑ni=1i] where ∑ni=1i2 = n(n+1)(2n+1)6
= 3[n(n+1)(2n+1)6 + n(n+1)2]
= 32 n(n+1) [2n+13 + 1]
= 32 n(n+1) 2n+43 = n(n+1)(n+2)