Find the value of cos3A−cos3AcosA + sin3A−sin3AsinA
Given expression requires the values of sin3A & cot3A
sin3A = 3sinA - 4sin3A
cos3A = 4cos3A - 3cosA
Substituting the value of sin 3A and cos 3A
Expression = cos3A−(4cos3A−3cosA)cosA + sin3A−3sinA−4sin3AsinA
cos3A−4cos3A+3cosAcosA + −3sin3A+3sinAsinA
−3cos3A+3cosAcosA + 3sinA−3sin3AsinA
-3cos2A + 3 + 3 -3sin2A
6 - 3 (sin2A+cos2A)
6 - 3 = 3