Find the value of QP if (a, a), (-a, -a) and (Pa, Qa) are the vertices of an equilateral triangle
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
-1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B -1 Let A = (-a, -a), B = (a, a) and
C = (Pa, Qa)
Since ABC is an equilateral triangle
AB = BC AB2=BC2 (a−(−a))2+(a−(−a))2=(Pa−a)2+(Qa−a)2 (2a)2+(2a)2=a2(P2−2P+1+Q2−2Q+1) 8a2=a2(P2+Q2−2P−2Q+2) 8=(P2+Q2−2P−2Q+2) P2+Q2−2(P+Q)=6 ---------- (1)
AB = AC AB2=AC2 (a−(−a))2+(a−(−a))2=(Pa−(−a))2+(Qa−(−a))2 (2a)2+(2a)2=a2(P2+2P+1+Q2+2Q+1) 8a2=a2(P2+Q2+2P+2Q+2) 8=(P2+Q2+2P+2Q+2) P2+Q2+2(P+Q)=6 ---------- (2)
Subtracting (2) from (1), we get
4(P+Q)=0
P+Q=0
Q=-P
Or, QP=−1