The correct option is D tan θ
Given: sin θ−2 sin3 θ2 cos3 θ−cos θ
=sin θ (1−2 sin2 θ)cos θ (2 cos2 θ−1)
We know that, sin2 θ+cos2 θ=1 and sin θcos θ=tan θ.
=tan θ (sin2 θ+cos2 θ−2 sin2 θ)(2 cos2 θ−(sin2 θ+cos2 θ))
=tan θ (sin2 θ+cos2 θ−2 sin2 θ)(2 cos2 θ−sin2 θ−cos2 θ)
=tan θ (cos2 θ−sin2 θ)(cos2 θ−sin2 θ)
Cancelling out the common terms, we get,
=tan θ