Find the value of sin3θ/(1+2cos2θ)
cos
cos
sin
cos
cos
sin
sin3θ/(1+2cos2θ)
Substituting the value of sin3θ & cos2θ
= (3sinθ−4sin3θ)/(1+2[2cos2θ−1])
= (3sinθ−4sin3θ)/(1+4cos2θ−2)
= (3sinθ−4sin3θ)/(4cos2θ−1)
How to simplify it further?
We know, sin2θ+cos2θ=1.We will replace 1 with sin2θ+cos2θ
So,
Expression = (3sinθ−4sin3θ)/(4cos2θ−sin2θ−cos2θ)
= (3sinθ−4sin3θ)/(3cos2θ−sin2θ)
= (3sinθ−4sin3θ)/(3(1−sin2θ)−sin2θ)
= sinθ(3−4sin2θ)/(3−3sin2θ−sin2θ) = sinθ(3−4sin2θ)/(3−4sin2θ) = sinθ
Note : Using the formula cos2θ = 1 - 2sin2θ will help in reducing the number of steps.