Find the value of (i) sin 750 (ii) tan 150.
i) sin 750 = sin 450 cos 300 + cos 450 sin 300
[∵ sin(A+B) = sin A cos B + sin B cos A]
= 1√2×√32+1√2×12
= √32√2+12√2=√3+12√2
(ii) tan 150 = tan (450−300)
= tan450−tan3001+tan450tan300
[∵tan(A−B)=tan A- tan B1+tan A tan B]
= 1−1√31+1×1√3=√3−1√3√3+1√3
= √3−1√3+1×√3−1√3−1
= 3+1−2√33−1=4−2√32
= 2−√3