(i) sin75∘
sin75∘=sin(45∘+30∘)
{∵sin(A+B)=sinAcosB+cosAsinB}
=sin45∘cos30∘+cos45∘sin30∘
=1√2×√32+1√2×12
=√3+12√2
∴sin75∘=√3+12√2
(ii) tan15∘
tan15∘=tan(45∘−30∘)
=tan45∘−tan30∘1+tan45∘⋅tan30∘
=1−1√31+1×1√3=√3−1√3√3+1√3
=√3−1√3+1
Do rationalization
Multiply and divide by √3−1
⇒√3−1√3+1=√3−1√3+1×√3−1√3−1=(√3−1)2(√3)2−(1)2
=3+1−2√33−1=4−2√32
=2(2−√3)2=2−√3
∴tan15∘=2−√3