Step 1: Use the distance formula and obtain the equation in terms of ‘a’.
Let the given points be:
P(3, -6) = x1,y1
Q(-3, a) = x2,y2
Given that the distance between the points P(3, -6) and Q(-3, a) is 10 units.
√((−3 – 3)2 + (a + 6)2)=10 units
Step 2 : Find the value of ‘a’.
Squaring both sides of the equation,
(−6)2+(a+6)2=100
(a+6)2=100–36=64
a+6=±8
Case I: Considering +8,
a+6=8 ,
a=8–6=2
Case II: Considering –8
a+6=–8
a=−8–6
a=–14
Therefore, the coordinates of Q are either Q(–3, 2) or Q(–3, –14).